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Abstract It has been observed that in the isotropic spin-1 chain a transition in the asymp-
totic properties of the correlation function (commensurate-incommensurate transition) oc-
curs at the AKLT point. We propose a simple random-walk-type argument, explaining this
transition. Also, we consider a modification of the AKLT model, for which this argument
can be turned into a rigorous proof.

Keywords Commensurate-incommensurate transition · Isotropic spin-1 chain · AKLT
model

1 Introduction

A general isotropic nearest-neighbor spin-1 Hamiltonian on a chain can be written, up to a
linear transformation, as

H =
∑

k

(cos θ Sk · Sk+1 + sin θ(Sk · Sk+1)
2). (1)

Here S = (Sx, Sy, Sz) is the vector of spin components, and θ ∈ [0,2π] is a parameter. It is
believed that for −π/4 < θ < π/4 the ground state of this chain is in the Haldane phase [3,
4] characterized by a spectral gap and exponential decay of correlations; the ground state
is unique. This is known rigorously to be the case for the special value θAKLT = arctan 1/3
(AKLT model [1]), when, up to a scalar factor, the Hamiltonian has the form

HAKLT =
∑

k

Pk,k+1, (2)

where Pk,k+1 denotes the projector onto the spin-2 subspace of a pair of neighboring spins.
The AKLT Hamiltonian has a unique, finitely correlated VBS-ground state, minimizing the
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Fig. 1 Correlation length ξ(θ)

and incommensurate wave
number q(θ)

energy of each term in (2). Correlations can be found exactly in this state and they are purely
exponential; in particular,

〈Sα
0 Sβ

n 〉 = δαβ

4

3

(
−1

3

)n

. (3)

For other values of θ the Hamiltonian is frustrated (in the sense that the global ground
state does not minimize the energy of single terms in the sum (1)), and one expects the
2-point correlation function to have an approximate form of the Ornstein–Zernike type. In
fact, correlation functions of isotropic spin-1 chains were studied numerically by Scholl-
wöck et al. [9], and they observed a transition in their qualitative asymptotic properties
(“commensurate-incommensurate transition”) occurring at the point θAKLT. Their conclu-
sions can be summarized as follows.

1. Within the Haldane phase, θ < θAKLT is a “commensurate subphase”. The two-point
correlation function behaves at large n as

〈Sα
0 Sα

n 〉 ∼ const × (−1)n e−n/ξ

n1/2
,

where ξ = ξ(θ) is the correlation length. The correlation length depends continuously on θ ,
so that limθ↗θAKLT ξ(θ) = ξAKLT = 1/ ln 3, and the left-sided derivative

dξ

dθ

∣∣∣∣
θ=θAKLT−0

= −∞.

2. θ > θAKLT is an “incommensurate subphase”. The correlation function at large n has
the form

〈Sα
0 Sα

n 〉 ∼ const × cos(qn + φ)
e−n/ξ

n1/2
,

with some “incommensurate wave number” q = q(θ) ∈ (π,2π/3), and a phase shift φ. The
wave number q(θ) depends continuously on θ , so that limθ↘θAKLT q(θ) = qAKLT = π and

dq

dθ

∣∣∣∣
θ=θAKLT+0

= +∞.

The correlation length depends continuously on θ , and there is a finite right-sided derivative

0 <
dξ

dθ

∣∣∣∣
θ=θAKLT+0

< +∞

(see Fig. 1).
These features of the spin-1 chain have been studied theoretically in [2, 7–9]: relying on

analogies with classical systems [9], on analogies with continuum field theories [2], and on
analysis of the static structure factor [7, 8]. It should be mentioned that transitions of the
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above sort can be observed in some simple explicitly solvable models, e.g., the free con-
tinuum quantum field theory with an appropriate energy-momentum relation, as proposed
by Fáth and Sütő in [2]. On the basis of these analogies it was conjectured that the C-IC
transition in the spin-1 chain is related to a double degeneracy of roots in some analytic ex-
pression, determining the asymptotic of the correlation function; as the perturbation is added
to the AKLT Hamiltonian, this degeneracy is lifted either in the real or in the imaginary di-
rection, depending on the sign of the coupling constant. This results in different behavior of
the correlation function and suggests that

ξ(θ) − ξAKLT ∼ const × (θAKLT − θ)1/2, θ < θAKLT, (4)

and

q(θ) − qAKLT ∼ const × (θ − θAKLT)1/2, θ > θAKLT. (5)

However, the nature of this degeneracy, and why exactly it is lifted in this way, remained
somewhat obscure, as these studies do not derive the asymptotic of the correlation function
directly from the initial lattice Hamiltonian. In this paper we propose such a derivation based
on random walk considerations.

Namely, using the Kennedy–Tasaki transform, we identify the ground state of the spin-1
chain with a system of interacting random walks on the chain. The resulting (1 + 1)-
dimensional picture can then be alternatively described by a transfer matrix acting in the
spatial direction, which in principle contains all necessary information for computing ground
state correlations. After that we consider what appears to be the leading, “one-particle”, term
in this transfer matrix, ignoring all other terms; this yields a solvable approximation. Its so-
lution exhibits the C-IC transition and has all the expected properties listed above. This ar-
gument is presented in Sect. 2. We emphasize, however, that we use here an approximation,
which is not exact, and therefore our derivation is only heuristic.

Within our picture, the origin of the C-IC transition at the VBS-point can be explained
as follows. The transfer matrix which we derive is not self-adjoint; furthermore, at the wave
number p = 0, responsible for the asymptotic behavior, the leading eigenvalue of the transfer
matrix is degenerate and has a Jordan block: it has geometric multiplicity 1 and algebraic
multiplicity 2. When the perturbation is imposed, this degeneracy is lifted, as expected,
either in the real or in the imaginary direction, which leads to the conjectured asymptotics.

In Sect. 3 we make an attempt to justify the approximation used in Sect. 2. It has been rig-
orously proved recently that the massive phase persists for small perturbations of the AKLT
model [6, 10]. Namely, near the AKLT point expectations of local observables depend an-
alytically on parameters in the Hamiltonian, and the Hamiltonian has a spectral gap. The
proof in [10] is based on a convergent large length scale cluster expansion, and one can ex-
pect that by pushing further this expansion one can extract more detailed information about
the ground states, in particular proving the C-IC transition. In the present paper, however, we
only solve a more modest task. In Sect. 3 we introduce a spin-blocked modification of the
AKLT model, which is analytically more tractable, and we rigorously prove the C-IC tran-
sition for it. Though this blocked model is rather artificial, it appears to capture the essential
features of the C-IC transition in the AKLT chain.
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2 Random Walk Representation and the Approximation of Minimal Trajectories

2.1 Kennedy–Tasaki Transformation

We consider the spin-1 chain on a segment [−L,L], with L large. First we consider the non-
perturbed AKLT model. It is convenient to perform the non-local unitary Kennedy–Tasaki
transformation [6] (KT-transform for short): for any operator A we define the KT-transform
Ã of A by

Ã = UAU−1,

where U is the unitary operator defined by

U =
∏

−L≤j<k≤L

exp{iπSz
jS

x
k }

(all factors in this product are commuting reflections).
The KT-transform has the following properties:

S̃x
j = Sx

j exp

(
iπ

L∑

k=j+1

Sx
k

)
,

S̃
y

j = exp

(
iπ

j−1∑

k=−L

Sz
k

)
S

y

j exp

(
iπ

L∑

k=j+1

Sx
k

)
, (6)

S̃z
j = exp

(
iπ

j−1∑

k=−L

Sz
k

)
Sz

j .

It follows, in particular, that

˜Sα
j Sα

k = −Sα
j exp

(
iπ

k−1∑

l=j+1

Sα
l

)
Sα

k , if α = x, z. (7)

Furthermore, though the KT-transform is non-local in general, the operator ˜Sα
k Sα

k+1 for any
α is local, acting only on spins k and k + 1. Hence for the AKLT model on [−L,L] we have

H̃AKLT,L =
L−1∑

k=−L

P̃k,k+1,

where P̃k,k+1 is a 5-dimensional projector acting on spins k and k + 1. These projectors can
be described as follows. Assume that we work with the standard coordinate representation
of the spin-1 variables:

Sx = 1√
2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ , Sy = 1√
2

⎛

⎝
0 −i 0
i 0 −i

0 i 0

⎞

⎠ , Sz =
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ ,
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and let |−〉, |0〉, |+〉 denote the base vectors (eigenvectors of Sz). Consider the four unit
vectors

φ1 = (|0〉 + √
2|+〉)/√3, φ2 = (|0〉 − √

2|+〉)/√3,

φ3 = (−|0〉 + √
2|−〉)/√3, φ4 = (−|0〉 − √

2|−〉)/√3.

These vectors form a regular tetrahedron in R

3, so that the scalar product 〈φk,φj 〉 = −1/3
if k �= j . Let φl

k denote the vector φl placed at site k. Then the 4-dimensional kernel of the
projector P̃k,k+1 can be described as the subspace spanned by the vectors φl

k ⊗ φl
k+1, l =

1,2,3,4. The four zero-energy ground states of the KT-transformed AKLT model on a
finite chain are thus simply the products

⊗L

k=−L φl
k, l = 1,2,3,4. In the pre-transformed

AKLT model, the four ground states converge to a single state on local observables in the
thermodynamic limit L → ∞. The operators exp{iπSα}, α = x, y, z, permute the vectors
φ1, φ2, φ3, φ4 (forming, together with the identity, the group Z2 × Z2):

exp{iπSx}: φ1 ↔ φ4, φ2 ↔ φ3,

exp{iπSy}: φ1 ↔ φ3, φ2 ↔ φ4, (8)

exp{iπSz}: φ1 ↔ φ2, φ3 ↔ φ4.

The formula (3) for correlations in the ground state now easily follows from relations (6);
e.g., using (7),

〈Sz
0S

z
n〉L = −

〈
L⊗

k=−L

φ1
k , S

z
0 exp

(
iπ

n−1∑

k=1

Sz
k

)
Sz

n

L⊗

k=−L

φ1
k

〉

= 〈φ1, φ2〉n−1〈φ1, Szφ1〉2 = (−1/3)n−1(2/3)2.

If α �= β , then ˜

Sα
0 S

β
n transforms the ground state

⊗L

k=−L φl
k into a vector which has φm

k ’s with
some m �= l either for all k < 0 or for all k > n; it follows that 〈Sα

0 Sβ
n 〉L → 0 as L → ∞.

2.2 Path Space Expansion

Let H be a small perturbation of the AKLT Hamiltonian. Then on a finite chain [−L,L] the
expectation in the ground state of H can be found as

〈A〉L = lim
t→+∞

〈ΩL, exp{−tHL}A exp{−tHL}ΩL〉
〈ΩL, exp{−2tHL}ΩL〉 ,

where ΩL is a ground state vector for the unperturbed AKLT Hamiltonian. In terms of the
KT-transformed chain,

〈A〉L = lim
t→+∞

〈⊗L

k=−L φ1
k , exp{−tH̃L}Ã exp{−tH̃L}⊗L

k=−L φ1
k 〉

〈⊗L

k=−L φ1
k , exp{−2tH̃L}⊗L

k=−L φ1
k 〉

. (9)

We will derive our random walk representation by expanding the evolution exp{−tH̃L} in
this formula in terms of vectors of the form

⊗L

k=−L φ
l(k)
k . (Note that this system of vectors is

overcomplete: it contains 42L+1 elements, while the space has dimension 32L+1; hence there
is some arbitrariness in this expansion.)
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Though we introduce this expansion with the purpose of analyzing the perturbed AKLT
model, before that, in this and the next subsections, we will study it in the case when H is the
non-perturbed AKLT Hamiltonian, i.e. H̃L = ∑L−1

k=−L P̃k,k+1. Even in this case, the expansion
is rather involved and we will have to restrict our attention to simplest configurations. Then,
in Sect. 2.4, we will extend our analysis to the perturbed model.

We start by considering infinitesimal changes of base vectors
⊗L

k=−L φ
l(k)
k under the

evolution exp{−tH̃L}, having in mind the formula

exp{−tH̃L} = lim
t0↘0

(
1 − t0

L−1∑

k=−L

P̃k,k+1

)t/t0

. (10)

Let P̃ be one of the projectors in the above formula; consider its action on vectors of the
form φl ⊗ φm. As mentioned earlier,

P̃ φl ⊗ φl = 0. (11)

Suppose now that l �= m, e.g., l = 1,m = 2. In this case we use the fact that (1 − P̃ )φ1 ⊗ φ2

is in the kernel of P̃ and hence one can write, by symmetry,

(1 − P̃ )φ1 ⊗ φ2 = a(φ1 ⊗ φ1 + φ2 ⊗ φ2) + b(φ3 ⊗ φ3 + φ4 ⊗ φ4).

A direct calculation shows that a = −1/3, b = 1/6. Summarizing, for l �= m we have

P̃ φl ⊗ φm = φl ⊗ φm + 1

3
(φl ⊗ φl + φm ⊗ φm) − 1

6

∑

p �=l,m

φp ⊗ φp. (12)

Formulas (10), (11), (12) completely specify the evolution as acting on configurations l(k),

k = −L, . . . ,L, associated with vectors
⊗L

k=−L φ
l(k)
k . Infinitesimally, the evolution affects

asymmetric bonds, with l(k) �= l(k + 1), and transitions to symmetric states occur inde-
pendently at these bonds. The constancy of a configuration in time is suppressed by the first
term on the r.h.s. of (12). Note the breakdown of the time-reversal symmetry: a non-constant
configuration can evolve into a constant one, but not contrariwise.

In order to obtain the random walk picture as an ensemble of trajectories we use a
Duhamel-type formula. Let

H̃L = Λ + J, (13)

where Λ is the diagonal part of the operator H̃L w.r.t. the system
⊗L

k=−L φ
l(k)
k , i.e.,

Λ

L⊗

k=−L

φ
l(k)
k =

(
L−1∑

k=−L

(1 − δl(k),l(k+1))

)
L⊗

k=−L

φ
l(k)
k . (14)

Then we write

e−tH̃L =
∞∑

s=0

∫
· · ·

∫

0<t1<···<ts<t

e−t1Λ(−J )e−(t2−t1)Λ · · · (−J )e−(t−ts )Λdt1 · · ·dts . (15)

It is natural to introduce a dual chain, associated with bonds of the initial chain, and specify a
configuration by its asymmetric bonds (defects for short), separating segments with constant
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Fig. 2 a A typical trajectory. b A minimal trajectory

l(k). The evolution is then visualized as that of a (non-constant) number of random walks
with a nearest-neighbor interaction, with possible proliferations and pair annihilations, but
not creations. The Duhamel formula gives an expansion of the evolution over all possible
trajectories. Vertical segments correspond to defects constant in time, resulting from factors
e−(ti−ti−1)Λ in the above formula. Each vertical segment of length t contributes the weight
density e−t to the trajectory. Horizontal segments (interactions or jumps of defects) corre-
spond to factors (−J ) and contribute the factors −1/3 or 1/6 to the weight. In order to
obtain the full expansion one has to sum over all possible configurations and integrate the
total product weight density over all positions of horizontal segments.

Now we apply the trajectory expansion to formula (9). Consider the operator
exp{−tH̃L}Ã exp{−tH̃L}, acting on the vector

⊗L

k=−L φ1
k in the numerator. The factor

exp{−tH̃L} on the right side preserves the vector
⊗L

k=−L φ1
k , so that the evolution becomes

non-trivial only after Ã is applied. Suppose A = Sz
0S

z
n, so that Ã = −Sz

0 exp(iπ
∑n−1

l=1 Sz
n)S

z
n.

In this case

Ã

L⊗

k=−L

φ1
k = −1

4

−1⊗

k=−L

φ1
k ⊗ (φ1

0 − φ2
0)

n−1⊗

k=1

φ2
k ⊗ (φ1

n − φ2
n)

L⊗

k=n+1

φ1
k

= 1

4

∑

r=0,1

∑

s=0,1

(−1)s+r

r−1⊗

k=−L

φ1
k

n+s−1⊗

k=r

φ2
k

L⊗

k=n+s

φ1
k , (16)

i.e., Ã creates two defects at 0 and n (more precisely, the first one is a linear combination
of defects at 0 and 1, and the second one is a linear combination of defects at n and n + 1).
When exp{−tH̃L} is applied again, these two defects give rise to two trajectories, which
either extend to the boundary of [−L,L] × [−t, t] or mutually annihilate; in the latter case
they have to be connected to each other. See Fig. 2a. The denominator of (9) in the case of
the non-perturbed AKLT model is trivial.

2.3 Approximation of Minimal Trajectories

The above two-dimensional picture of weighted random walk trajectories can in principle
be alternatively generated by a transfer matrix acting in the “space”, rather than “time”,
direction, which is especially relevant for computing the correlation length. (We can also
refer to this alternative description as the “horizontal” evolution, in contrast to the original
“vertical” one). However, even for the non-perturbed AKLT model this transfer-matrix is a
sufficiently complicated many-body operator, which does not appear to be exactly solvable.
This is related to the fact that, while the structure of ground states in the AKLT model
is simple, no explicit formulas for excited states are available. Therefore at this point we
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introduce our crucial approximation. As shown above, in order to compute 〈Sz
0S

z
n〉L one has

to consider trajectories on [−L,L] × [0, t] originating from (0,0) and (n,0). We expect
that the entropy of large trajectories is suppressed by their small weight, so that the leading
contribution to 〈Sz

0S
z
n〉L comes from shortest finite trajectories connecting the points (0,0)

and (n,0).
Precisely, we will consider only those trajectories having the smallest possible number

of horizontal legs (minimal trajectories for short, see Fig. 2b), and neglect all others. In
particular, a minimal trajectory can be viewed as a single-valued function on an interval
of the lattice Z; it describes jumps and annihilations of defects but not transitions of the
kind described by the last term in (12), since they necessarily lead to extra legs. Note that
a minimal trajectory always has one maximum and no minima (except for the endpoints),
since minima would correspond to creations of pairs of random walks out of vacuum, which
do not occur.

The “space-directed” transfer matrix T corresponding to the minimal trajectories is a
simple one-particle approximation to the actual total transfer matrix. We can define T as
acting on one-defect states characterized by the time coordinate t and the “direction of
propagation” ↑ or ↓: to the left of the trajectory’s maximum the defect moves forward
in time, at the maximum it changes direction, and then moves backward. The transition
amplitudes for a shift by one lattice spacing can be written as

T |↑, t〉 = −1

3

∫ +∞

0
e−s |↑, t + s〉ds − 2

3

∫ +∞

0
e−s |↓, t + s〉ds,

T |↓, t〉 = −1

3

∫ +∞

0
e−s |↓, t − s〉ds.

As discussion following (15) shows, the contribution to the correlation function from mini-
mal trajectories can be expressed using powers of this operator T . The amplitude ↑−→↓ is
twice as large as the others here, because this transition corresponds to the annihilation of
two neighboring random walks (in the initial time evolution setup), and this annihilation is
caused by a jump of either of them.

As an example, we test now the approximation of minimal trajectories on the correlation
function 〈Sz

0S
z
n〉. By (16),

〈Sz
0S

z
n〉 = −1

4
(cn−1 − 2cn + cn+1), (17)

where cn is the contribution from the term describing two defects separated by exactly n

lattice spacings:

cn = lim
L→∞
t→+∞

〈
L⊗

k=−L

φ1
k , exp{−tH̃L}

r−1⊗

k=−L

φ1
k

n+s−1⊗

k=r

φ2
k

L⊗

k=n+s

φ1
k

〉
.

Now let c(mt)
n be cn in the approximation of minimal trajectories. It is easy to see that

c(mt)
n =

∫ +∞

0
e−t (T n)|↓,t〉,|↑,0〉dt = −3(T n+1)|↓,0〉,|↑,0〉. (18)
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Since the operator T commutes with translations, it is convenient to apply Fourier transform.
When Fourier transformed with respect to t , T becomes a matrix-valued function:

T̂p

(|↑〉
|↓〉

)
= −1

3

(
(1 − ip)−1 0
2(1 − ip)−1 (1 + ip)−1

)(|↑〉
|↓〉

)
, p ∈ R. (19)

Then

T n
|↓,0〉,|↑,0〉 = 1

2π

∫ +∞

−∞
(T̂ n

p )↓↑dp

= 1

2π

∫ +∞

−∞

(1 + ip)n − (1 − ip)n

(−3)nip(1 + ip)n(1 − ip)n−1
dp

= (−3)−n,

by a residue computation. Summarizing, in the approximation of minimal trajectories

〈Sz
0S

z
n〉 ≈ 3

4
((−3)−n − 2(−3)−n−1 + (−3)−n−2) = 4

3
(−3)−n,

which turns out to coincide with the exact value. We emphasize, however, that minimal
trajectories constitute only a part of the total expansion and are supposed to yield only
approximate values in general (e.g., for the perturbed AKLT model in the next subsection).
We are inclined to view the above coincidence as accidental.

2.4 Path Space Expansion and Approximation of Minimal Trajectories for the Perturbed
Model

Now consider the perturbed model HAKLT + δV , where V is the perturbation and δ a small
scalar parameter. The perturbed model is supposed to belong to the family (1). It is conve-
nient to choose

V =
∑

k

(P
(0)

k,k+1 − 1/4), (20)

where P
(0)

k,k+1 is the projector to the spin-0 singlet; this is related to the original parametriza-
tion (1) by tan θ = 1/3 + 2δ/3, so that θ − θAKLT = 3δ/5 + o(δ). Denote the KT-transform
U(P

(0)

k,k+1 − 1/4)U−1 by Rk,k+1, so that the KT-transformed Hamiltonian of the perturbed
AKLT model can be written as

∑
k P̃k,k+1 + δ

∑
k Rk,k+1.

A direct computation gives

Rφl ⊗ φl = 1

4

∑

n�=l

φn ⊗ φn, (21)

and for l �= m

Rφl ⊗ φm = −1

4
φl ⊗ φm − 1

12

∑

n

φn ⊗ φn. (22)

Now we update our trajectory expansion by including the perturbation into the random walk
picture. To this end δ

∑
k Rk,k+1 should be added to

∑
k P̃k,k+1 in (10). In order to obtain the

modified Duhamel formula we again use the decomposition H̃AKLT + δṼ = Λ + J (similar
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Fig. 3 A minimal trajectory
containing R-legs

to (13)), where Λ is the diagonal part of H̃AKLT + δṼ . This new Λ is given by the r.h.s.
of (14) multiplied by 1 − δ/4. The operator J is modified accordingly, it contains now a
contribution from the R terms. The evolution of the perturbed model is then given by the
same formula (15).

We discuss now the effect of the changes introduced by the perturbation. The change
in the scalar value of Λ is not essential. The change in J is twofold. First, by (22), the
amplitude −1/3 of a jump is adjusted to −1/3 + δ/12, which is not essential either. Second,
new transitions arise as a consequence of flipping φl ⊗ φl into φn ⊗ φn as in (21). In the
trajectory expansion, these transitions correspond to new horizontal legs of length 2 (R-legs
for short) with the amplitude −δ/4. In particular, a pair of random walks separated by two
lattice spacings can now be created out of vacuum with a nonzero amplitude. This means
that, in the horizontal evolution picture, a trajectory going down can make a “U-turn” and
start going up (which was previously impossible). This latter property is crucial for our
explanation of the C-IC transition.

We extend our approximation by minimal trajectories to the perturbed model. As before,
we define minimal trajectories as those with the total length of horizontal segments having
the minimal possible value (see Fig. 3). Minimal trajectories can now also contain R-legs
and have several maxima and minima.

The full expansion of the evolution in trajectories is now more complicated; a general
(non-minimal) trajectory can have several connected components since creations of pairs
are possible. In particular, the denominator in (9) no longer equals 1. It can be argued,
however, that the total weight of minimal trajectories connecting (0,0) to (n,0) still provides
a reasonable approximation for the correlation function in question. Indeed, viewing the
random walk representation as a hard core polymer model, and assuming that weights of
trajectories are small so that the low-activity cluster expansion can be performed, one can
represent the ratio in (9) via a sum over connected clusters of trajectories. In a cluster there
is always one trajectory connecting (0,0) to (n,0), so the weight of minimal trajectories is
the leading term in the cluster expansion. In Sect. 3 this argument is made rigorous for a
modification of the AKLT model.

In order to write the perturbed horizontal transfer matrix, it is convenient to supplement
the states |↑, t〉, |↓, t〉 with new states |R, t〉 describing the walker in the middle of an R-leg.
Then R-legs and their amplitudes can be described in the horizontal evolution setup by new
transitions

|↑, t〉 �→ −
∫ +∞

0
e−(1−δ/4)s |R, t + s〉ds,

|↓, t〉 �→ −
∫ +∞

0
e−(1−δ/4)s |R, t − s〉ds,

|R, t〉 �→ δ

4
|↑, t〉 + δ

4
|↓, t〉.

Also, we update the rates of transitions among states |↑, t〉 and |↓, t〉, taking into ac-
count (22) (though this adjustment is not essential for the final qualitative picture). The total
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transfer matrix (in the approximation of minimal trajectories) thus becomes

T |↑, t〉 = −1 − δ/4

3

∫ +∞

0
e−(1−δ/4)s |↑, t + s〉ds

− 2 − δ/2

3

∫ +∞

0
e−(1−δ/4)s |↓, t + s〉ds −

∫ +∞

0
e−(1−δ/4)s |R, t + s〉ds,

T |↓, t〉 = −1 − δ/4

3

∫ +∞

0
e−(1−δ/4)s |↓, t − s〉ds −

∫ +∞

0
e−(1−δ/4)s |R, t − s〉ds,

T |R, t〉 = δ

4
|↑, t〉 + δ

4
|↓, t〉,

so that in the Fourier-transformed representation it is given by the matrix-valued function

T̂p

⎛

⎝
|↑〉
|↓〉
|R〉

⎞

⎠ =

⎛

⎜⎜⎝

− 1−δ/4
3(1−δ/4−ip)

0 δ/4

− 2(1−δ/4)

3(1−δ/4−ip)
− 1−δ/4

3(1−δ/4+ip)
δ/4

− 1
1−δ/4−ip

− 1
1−δ/4+ip

0

⎞

⎟⎟⎠

⎛

⎝
|↑〉
|↓〉
|R〉

⎞

⎠ .

One eigenvalue of T̂p is 0, the other two equal λ±(v(p)), where

λ±(v) = −1 ± i
√

v2 + 18δ(1 + v2)/(4 − δ)

3(1 + v2)
, (23)

and v(p) = p/(1 − δ/4).

2.5 Asymptotic of the Correlation Function for the Perturbed Model

Recall that, as discussed in Sect. 2.3, the correlation function can be represented as a linear
combination of contributions from defects separated by exactly n lattice spacings (see (17)).
In order to find the asymptotic of 〈Sz

0S
z
n〉 in the approximation of minimal trajectories, we

update our expression for c(mt)
n . It is easy to check that an analog of (18) for the perturbed

model can be written, e.g., as

c(mt)
n = −T n+1

|R,0〉,|↑,0〉 − T n+1
|R,0〉,|↓,0〉.

A direct calculation shows that the r.h.s. equals

1

π

∫ +∞

−∞

λn+1
+ (v) − λn+1

− (v)

λ+(v) − λ−(v)

dv

1 + v2
. (24)

The asymptotic of this expression can be found by standard methods. Let

f±(v) = λn+1
± (v)

(λ+(v) − λ−(v))(1 + v2)
.

The functions f± have branching points at v = ±v0 := ±√−18δ/(4 + 17δ). We make a cut
along the segment [−v0, v0] and adopt the convention that f± is the branch which corre-
sponds to the ± sign of the square root in (23) for large real v. We consider now the cases
δ < 0 and δ > 0 separately.



968 D.A. Yarotsky

1. Commensurate case δ < 0. In this case the segment [−v0, v0] ⊂ R. The integrand in
(24) is a single-valued analytic function with poles at v = ±i, therefore using the fast fall-
off of f± we can replace the integration along R by the integration along i/2 + R. Above
this line f+ has no singularities, so

∫
i/2+R

f+(v)dv = 0. Similarly,
∫

−i/2+R
f−(v)dv = 0.

This shows that (24) is equal to π−1
∫

γ
f−(v)dv, where γ is a contour going around the cut

[−v0, v0], which in turn equals

1

π

∫ v0

−v0

(f−(v − i0) − f−(v + i0))dv.

The two functions in the integrand are real-valued, and the leading contribution to the as-
ymptotic results from the neighborhood of v = 0, where |λ−(v ± i0)| attains the maximum.

This maximum is equal to 1
3 +

√
−2δ
4−δ

. Using the Laplace method one can show that

c(mt)
n = const(1 + O(n−1))√

n

(
−1

3
−

√ −2δ

4 − δ

)n

.

The same asymptotic then holds for the approximate value of 〈Sz
0S

z
n〉, in general agreement

with the numerical results and the conjecture (4). For the correlation length we thus get

ξ ≈
(

− ln

(
1

3
+

√ −2δ

4 − δ

))−1

= 1

ln 3
+

√
30(θAKLT − θ)

2 ln2 3
(1 + o(θAKLT − θ)).

2. Incommensurate case δ > 0. In this case the segment [−v0, v0] ⊂ iR. Like in the
previous case, we have c(mt)

n = π−1
∫

γ
f−(v)dv, where γ is a contour going around the cut

[−v0, v0]. It is convenient to make a change of variables: w = w(v) = λ−(v). The inverse
relation is

v(w) = i

3w

√
(3w + 1)2 + 18δ

4 − δ
.

This function has branching points at

w = w±,0 = −1

3
± i

√
2δ

4 − δ
,

corresponding to v = 0. The function λ−(v) maps the v-plane cut along [−v0, v0] onto the
w-plane with a cut connecting w−,0 with w+,0. A direct computation yields

dv

(λ+(v) − λ−(v))(1 + v2)
= 3idw

2w
√

(3w + 1)2 + 18δ/(4 − δ)
,

so

c(mt)
n = 3i

2π

∫

λ−(γ )

wndw√
(3w + 1)2 + 18δ/(4 − δ)

= 3i

π

∫ w+,0

w−,0

wndw√
(3w + 1)2 + 18δ/(4 − δ)

,

where the latter integration is along any line connecting w−,0 to w+,0. Deforming appropri-
ately the integration path, we see that the leading contribution to the integral comes from the
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endpoints w−,0,w+,0, and for large n the asymptotic for the integral (and hence for 〈Sz
0S

z
n〉)

is

Re const
wn

+,0√
n

(1 + O(n−1)),

again in agreement with the numerics and the conjecture (5). The incommensurate wave
number is thus found to be

q ≈ π + arctan(
√

18δ/(4 − δ)) = π +
√

30(θ − θAKLT)

2
(1 + o(θ − θAKLT)),

and the correlation length

ξ ≈
(

ln

(
3

√
4 − δ

4 + 17δ

))−1

= 1

ln 3
+ 15(θ − θAKLT)

4 ln2 3
(1 + o(θ − θAKLT)).

3 Rigorous Proof for a Modification of the AKLT Model

3.1 Modified AKLT Model and the Result

It appears to be rather difficult to rigorously prove the C-IC transition for the AKLT model.
In this section we will consider a closely related family of frustration-free isotropic spin-1
chains, where this can be done. These are spin-blocked modifications of the AKLT model,
where the size of a block is a parameter which we tune to derive a convergent cluster expan-
sion.

Precisely, fix some integer L. Consider a spin-1 chain [n + 1, n + 2L] of length 2L with
free boundary conditions. The AKLT model has a 4-dimensional space of ground states
on this chain; let us denote by Pn+1,n+2L the projector onto the complementary subspace.
Consider the Hamiltonian

H(L) =
∑

k∈Z

PkL+1,(k+2)L. (25)

This can be viewed as a direct analog of the AKLT model, where a single spin is replaced by
a block of L spins. For L = 1 the Hamiltonian H(L) is just the AKLT model. H(L) has the
same unique infinite-volume zero energy ground state as the AKLT model; the proof that
H(L) has a spectral gap is analogous to the proof for the AKLT model.

We will rigorously prove in this section the C-IC transition for H(L) for L sufficiently
large. In this case one can confirm the approximation of minimal trajectories, in the sense
that it can be used as a basis for a controllable polymer expansion. We will partly follow
the work of Kennedy [5], where he establishes the asymptotic of the correlation functions
for the Ising model in a strong magnetic field. We consider the perturbed model H(L) + δV ,
where, as before, V is given by (20). It is not difficult to prove that for δ small enough
H(L) + δV has an exponentially clustering ground state 〈·〉, which analytically depends on
δ (see [10] for the case L = 1; for other L the proof is identical). We will consider the
correlation function 〈Sα

0 Sα
Ln〉 and establish its expected properties. We will typically denote

by ε, c, etc. various auxiliary constants, which can be different in different formulas.
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Theorem 1 Let L be sufficiently large.
1. (Commensurate case) Let δ < 0 and |δ| be small enough. Then, as n → ∞,

〈Sα
0 Sα

Ln〉 = c((−1)Ln + O(n−1/2))
e−n/ξ

n1/2
,

where, as δ → 0,

ξ(δ) = (L ln 3)−1 + c1

√
δ + O(δ) (26)

with c1 > 0.
2. (Incommensurate case) Let δ > 0 and δ be small enough. Then, as n → ∞,

〈Sα
0 Sα

Ln〉 = c(cos(qn + φ) + O(n−1/2))
e−n/ξ

n1/2
,

where, as δ → 0,

ξ(δ) = (L ln 3)−1 + O(δ)

and

q(δ) = Lπ + (L ln 3)2c1

√
δ + O(δ). (27)

The constant c1 in (27) is the same as in (26).

We remark that in the incommensurate case we only claim a linear bound for ξ(δ), be-
cause a more precise asymptotic requires a higher order perturbation theory.

The remainder of Sect. 3 is the proof of this theorem. In Sect. 3.2 we consider the path–
space expansion for our model. In Sect. 3.3 we reduce the asymptotic of the correlation
function to a “one-particle” expression, which is essentially a perturbation of the expression
obtained by considering only minimal trajectories. In Sect. 3.4 we study this one-particle
expression and finish the proof.

3.2 Beginning of the Proof: Path Space Expansion

We use again the Kennedy–Tasaki transform (as defined on the initial non-rescaled chain).
Consider first the non-perturbed Hamiltonian (25). Let Qk,k+1 denote the KT-transform of
the projector PkL+1,(k+2)L. The operator Qk,k+1 acts on spins kL + 1, . . . , (k + 2)L and
projects onto the orthogonal complement to the four-dimensional subspace spanned by
⊗(k+2)L

s=kL+1 φl, l = 1,2,3,4. It is convenient to introduce blocked spins Φk , describing the

state of the original spins φkL+1, . . . , φ(k+1)L. Denote Φl
k = ⊗(k+1)L

s=kL+1 φl, l = 1,2,3,4. If L

is large then the system of four vectors Φl, l = 1,2,3,4, is close to an orthogonal system,
with the scalar product between two vectors

λ = 〈Φl,Φm〉 = (−3)−L (28)

for l �= m. Our goal will be to make an expansion w.r.t. the products
⊗

k Φ
l(k)
k , similarly to

the expansion w.r.t.
⊗

k φ
l(k)
k in the previous section. The Hamiltonian H(L) has been chosen

so that for Qk,k+1 we have relations similar to (11), (12) for P̃k,k+1:

QΦl ⊗ Φl = 0,
(29)

QΦl ⊗ Φm = Φl ⊗ Φm − a(Φl ⊗ Φl + Φm ⊗ Φm) − b
∑

r �=l,m

Φr ⊗ Φr,
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where the coefficients a, b depend on L through λ,

a = λ(1 + λ + 2λ2)

(1 + λ)(1 + 3λ2)
, b = λ2(1 − λ)

(1 + λ)(1 + 3λ2)
. (30)

Note that the coefficients a, b are small if L is large, in particular

a(L) = (−3)−L(1 + O((−3)−L)). (31)

We thus get the same random walk picture as in the previous section, but on a larger scale
and with different coefficients.

Now we make an expansion about minimal trajectories, following Kennedy. As shown
in the previous section, the value of the correlation function is given by the sum of all tra-
jectories connecting the point (0,0) with (n,0). For each trajectory, consider its projection
to the space lattice. For each k between 0 and n, the segment [k, k + 1] is either the projec-
tion of a unique leg of the trajectory, or the projection of more than one legs. We group the
latter segments [k, k + 1] into connected families, and call them (one-dimensional) poly-
mers. Between polymers the trajectory is a minimal trajectory, and in the Fourier modes
representation the transfer operator is, like in (19), a 2 × 2-matrix-valued function

T̂p

(|↑〉
|↓〉

)
= a

(
(1 − ip)−1 0
2(1 − ip)−1 (1 + ip)−1

)(|↑〉
|↓〉

)
, p ∈ R, (32)

where a is given by (30). We take into account the contribution from polymers by introduc-
ing transfer matrices W(s), acting on the same states |↑, t〉, |↓, t〉 as T and describing the
total contribution of polymers of length s with the given incoming and outgoing states. We
therefore write, using again Fourier transform,

〈Sα
0 Sα

Ln〉 =
∫

R

fn(p)dp, (33)

where

fn(p) =
∑

nk=1,2,...,
sk=1,2,...∑
nk+∑

sk=n

Ŵ
(s0)

in,p T̂ n1
p Ŵ (s1)

p T̂ n2
p Ŵ (s2)

p · · · T̂ nmax
p Ŵ

(smax)

fin,p + Ŵ
(n)

in+fin,p. (34)

Here we single out the 1 × 2-matrix Ŵ
(s0)

in,p and 2 × 1-matrix Ŵ
(smax)

fin,p , corresponding to poly-
mers at the boundaries of the trajectory; the values s0, smax are the lengths of their projections
to the segment [0, n]. The last term Ŵ

(n)

in+fin,p is the contribution from polymers extending all
the way from 0 to n.

Our assumption that L is large implies that a, b in (30) can be made arbitrarily small;
from this one can derive exponential estimates for the weights of polymers (see [5]):

‖W(s)
t2,t1

‖ ≤ εsase−c|t1−t2|, (35)

‖W(s)
#,t2,t1

‖ ≤ εsase−c|t1−t2|, (36)

where # = in,fin or in + fin. Here c is a positive constant which can be chosen independent
of L, while ε can be chosen arbitrarily small for large enough L. The crucial point in deriving
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Fig. 4 A piece of a trajectory
corresponding to H̃ (L) + δṼ

these estimates is that polymers have, by definition, extra horizontal legs, each of which has
a small factor a or b.

Using Fourier transform, we see that the operators Ŵ (s)
p , Ŵ

(s)
#,p depend analytically on p

in a vicinity of the real axis, and we have there estimates

‖Ŵ (s)
p ‖ ≤ εsas, ‖Ŵ (s)

#,p‖ ≤ εsas . (37)

It is essential that for p close to 0, Ŵ (s)
p is small compared to T̂ s

p .
Here and below we shall assume that the thermodynamic limit has been performed both

in time and space; this can be done by standard cluster expansion since we have good cluster
estimates.

For the perturbed Hamiltonian H̃ (L) + δṼ the expansion is more complicated. In the
general case δ �= 0, in each single site Hilbert space of the spin blocked lattice we have to
consider also the fifth, complementary subspace, Hc = (C3)L � (

⊕4
l=1{Φl}). Whereas in

the non-perturbed case the evolution preserves the set of vectors of the form
⊗

k Φ
l(k)
k , the

perturbation δṼ creates transitions to and from states containing excitations from Hc.
We use an analog of the Duhamel formula (15). Like in Sect. 2, we define Λ as the diag-

onal part of the non-perturbed Hamiltonian H̃ (L) with respect to product basis vectors. The
difference is that now we also have to take into account the complementary subspaces Hc,
so that the decomposition is rather into subspaces of the form (

⊗
k∈X{Φl(k)

k })⊗ (
⊗

k /∈X Hc
k),

where X ⊂ Z. Note that Hc ⊗ {Φl} and Hc ⊗Hc are eigenspaces of Q with the eigenvalue
1, hence, similarly to (14), (

⊗
k∈X{Φl(k)

k }) ⊗ (
⊗

k /∈X Hc
k) is an eigenspace of Λ with the

eigenvalue
∑

k,k+1∈X(1 − δl(k),l(k+1)).
Now let J = H̃ (L) − Λ, then we have

e−t (H̃ (L)+δṼ ) =
∞∑

s=0

∫
· · ·

∫

0<t1<···<ts<t

e−t1Λ(−J − δṼ )e−(t2−t1)Λ · · ·

× · · · (−J − δṼ )e−(t−ts )Λdt1 · · ·dts . (38)

We keep Λ and J independent of δ.
We can introduce trajectories as boundaries separating space–time regions with different

Φl and Hc (see Fig. 4). As pointed out above, transitions to and from regions with Hc are
caused by the perturbation δṼ . In fact, every horizontal leg bordering an Hc-region carries δ

associated with corresponding terms δRk,k+1 in δṼ . Some horizontal legs can have length 2,
as a result of terms δRk,k+1 coupling neighboring blocks of the rescaled lattice. Anyway, the
number of δ’s associated with an Hc-region is at least of the order of its horizontal length, so
that typical Hc-regions tend to be short provided δ is small enough. A large vertical length
is also unfavorable for an Hc-region, since sites with states from Hc are excited for Λ and
hence decrease exponential factors e−(tl+1−tl )Λ in the Duhamel expansion.

In general, a single trajectory as defined above can be described by different terms in the
Duhamel expansion (38). Inside an Hc-region there may be additional transitions between
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different Hc states; they are caused by the perturbation δṼ . However, each instance of such
a transition brings in an extra factor δ, so it is unfavorable to have many transitions.

The above considerations show that for δ small enough, Hc-regions tend to be small. One
can show that they can be controlled with exponential estimates.

Apart from introducing Hc-regions, the perturbation δṼ changes transition amplitudes
between Φl-regions. Like in Sect. 2, the significant change is the appearance of “U-turns”
(the piece of the trajectory including the lowest horizontal leg in Fig. 4). We expect these
U-turns to make the leading contribution to the asymptotic of the correlation function to first
order in δ. Note that the order of Hc-regions is at least δ2, so they will not contribute to the
first-order asymptotic.

Since δṼ creates excitations of the vacuum, a general trajectory (boundary between re-
gions) will consist of many connected components. If δ is small, then these connected com-
ponents form a dilute gas. A typical configuration consists of one “big” component remain-
ing from the non-perturbed case and connecting points (0,0) and (n,0), and many “small”
components forming “islands” in the sea of Φ1 states.

The cluster expansion represents the correlation function as an expansion over connected
clusters of connected trajectories (see Kennedy [5]). A cluster consists of the “big” trajectory
(connecting (0,0) and (n,0)) and a number of small “islands” which overlap in such a way
that the whole set is connected. We can therefore view a cluster as a perturbed minimal
trajectory.

Now we can extend to the perturbed Hamiltonian the representation of the correlation
function by transfer matrices T and W(s). We divide again the segment [0, n] into minimal
trajectories alternating with intervals having more complex structure (polymers). In general,
a polymer includes now a piece of the “big” trajectory and a number of “small” trajectories.
It is not difficult to check that the weight clusters into the product over minimal trajectories
and polymers, so that we can define T and W(s). The exponential estimates (37) then still
hold as long as |δ| is small enough.

It is convenient to have T independent of δ, so we slightly modify the above definition
by putting all the contribution of the perturbation into polymers W(s). More precisely, a
trajectory can be a minimal one but contain some legs whose weight involves δṼ . In this case
we consider these legs as belonging to polymers and modify W(s) accordingly. In particular,
the lowest horizontal leg in Fig. 4 has to belong to a polymer, since the corresponding
transition can only occur as a result of δṼ .

The full expansion for W(s) is rather complicated, but for our qualitative first order per-
turbation theory we will need to consider essentially only the leading term in W

(1)
↑↓ given by

the simplest U-turn, as represented by the lowest leg in Fig. 4.

3.3 Asymptotic of the Correlation Function: Reduction to a “One-Particle” Leading Term

In order to find the asymptotic of the correlation function we divide the total set of momenta
into two subsets, a bounded neighborhood Ω of the origin, and the remainder R \Ω , whose
contribution will be negligible. For momenta in Ω the perturbation is small. If operators in
the expansion (34) were scalars rather than 2 × 2 matrices, then fn(p) could be represented
using the partition function of the dilute gas of polymers Ŵ (s) in the segment [0, n], which
would imply fn(p) = c1,pcn

2,p(1+O(εn)) with some ε < 1 (see [5]). We now give an analog
of this asymptotic in our 2 × 2-matrix setting.

Lemma 1 Let Ω ⊂ R be a fixed bounded open set containing the origin. For any ε1 > 0,
one can chose L sufficiently large so that for δ sufficiently small the following holds:
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(a) For p ∈ Ω , uniformly in p

fn(p) = ηt
in,pGn

pηfin,p + O((aε1)
n); (39)

here ηin,p, ηfin,p are 2-dimensional vectors, Gp is a 2 × 2-matrix, and

‖(Gp − T̂p)T̂ −1
p ‖ ≤ ε1. (40)

Furthermore, ηin,p, ηfin,p and Gp depend analytically on p and δ in some complex neigh-
borhoods of Ω and 0, respectively; these neighborhoods don’t depend on L, and the bound
(40) extends to these neighborhoods.

(b) For p ∈ R \ Ω , uniformly in p

|fn(p)| = O((a(1 + p2)−1/2 + aε1)
n).

Remark 1 Part (a) says that for p ∈ Ω the leading term in the asymptotic is the first term on
the r.h.s. of (39), since it is essentially of order (a(1 + p2)−1/2)n by (40) and (32). On the
other hand, part (b) ensures that the contribution of momenta p /∈ Ω is small compared to p

near 0, since for p /∈ Ω we have (1 + p2)−1/2 < cΩ for some cΩ < 1.

Proof (a) We start by writing

fn(p) =
∑

s0,smax,r=1,2,...
s0+smax+r=n

Ŵ
(s0)

in,pAr,pŴ
(smax)

fin,p + Ŵ
(n)

in+fin,p,

where

Ar,p =
∑

nk=1,2,...
sk=1,2,...∑
nk+∑

sk=r

T̂ n1
p Ŵ (s1)

p T̂ n2
p Ŵ (s2)

p · · · T̂ nmax
p . (41)

It has already been stated in (37) that Ŵ
(n)

in+fin,p = O((aε1)
n), if L is large enough and δ small

enough.
Fix p ∈ Ω ; in what follows we mostly omit p from the notation. It is convenient to

introduce operators Br by

Ar = BrBr−1 · · ·B1.

We will show that Br converge to a limit G so that ‖Br − G‖ = O(εr). We can rewrite (41)
as

Ar = T̂ Ar−1 + T̂

r−2∑

s=1

Ŵ (s)Ar−s−1.

Multiplying by A−1
r−1 on the right (we will see shortly that Ar are invertible), we get

Br = T̂ + T̂

r−2∑

s=1

Ŵ (s)B−1
r−sB

−1
r−s+1 · · ·B−1

r−1. (42)

This is an equation that can be solved by iterations. Precisely, consider the map

F(B) = T̂ + T̂

∞∑

s=1

Ŵ (s)B−s .
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Using the inevitability of T̂ (which is uniform for momenta p ∈ Ω) and the exponential
smallness of Ŵ (s), one easily proves that F is a contraction in a small neighborhood of the
operator T̂ . Hence, iterations of F yield a sequence converging exponentially fast to the
fixed point G of F . The difference between F and the transformation defined by the r.h.s.
of (42) is of order O(εr), so one can easily see that Br converge to G exponentially fast.

Now let us write Ar in the form

Ar = GrCr.

We have

Cr = G−rBrG
r−1Cr−1 = Cr−1 + G−r (Br − G)Gr−1Cr−1.

Since Br converge to G exponentially fast, we conclude that Cr also converge to some limit
C∞ exponentially fast.

Now write fn in the form

fn =
∑

s0,smax=1,2,...
s0+smax≤n

(Ŵ
(s0)

in G−s0)Gn(G−smaxC∞Ŵ
(smax)

fin )

+
∑

s0,smax,r=1,2,...
s0+smax+r=n

Ŵ
(s0)

in Gr(Cr − C∞)Ŵ
(smax)

fin + Ŵ
(n)

in+fin.

Using the exponential convergence of Cr and (37), we see that the last two terms here are
O((aε1)

n). Consider the sums

ηt
in :=

∞∑

s0=1

Ŵ
(s0)

in G−s0 , ηfin :=
∞∑

smax=1

G−smaxC∞Ŵ
(smax)

fin .

These sums are also exponentially convergent, and the first term in the above expansion of
fn equals ηt

inG
nηfin + O((aε1)

n).
In order to see that ηin,p, ηfin,p and Gp extend analytically to neighborhoods of Ω and

δ = 0 independent of L, notice that all operation we have performed to find ηin,p, ηfin,p,Gp

preserve analyticity, and that the exponential estimates (35), (36) ensure that (37) holds in a
complex neighborhood of Ω independent of L. This concludes the proof of part (a).

(b) This estimate follows easily using (37). �

Fix some p0 > 0. Using Lemma 1, if L is sufficiently large and δ sufficiently small, then

〈Sα
0 Sα

Ln〉 =
∫ p0

−p0

ηt
in,pGn

pηfin,pdp + O((ca)n), (43)

where c = (1 + (1 + p2
0)

−1/2)/2 < 1. If the coupling constant δ = 0, then 〈Sα
0 Sα

Ln〉 =
c1(−3)−Ln with c1 �= 0, and by (31) for large enough L the last term in the above formula is
o((−3)−Ln). This implies that the leading asymptotic is determined by the first term, and

∫ p0

−p0

ηt
in,pGn

pηfin,pdp = c1(1 + o(1))(−3)−Ln. (44)

This means in particular that ηin,p, ηfin,p do not vanish identically, and, since they are analytic
in δ, this applies to small nonzero δ as well.
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3.4 Analysis of the “One-Particle” Leading Term

We have thus reduced the analysis of the asymptotic of the correlation function to the analy-
sis of the asymptotic of the integral

∫ p0
−p0

ηt
in,pGn

pηfin,pdp. We refer to it as a “one-particle
expression” since it describes the evolution by just 2 × 2-matrices Gp .

Let

Gp =
(

g↑↑,p g↑↓,p

g↓↑,p g↓↓,p.

)

and consider first the case δ = 0. It is easy to see from the construction of Gp that in this
case g↑↓,p = 0 and hence

Gn
p =

(
gn

↑↑,p 0

g↓↑,p

∑n

k=1 gk−1
↑↑,pgn−k

↓↓,p gn
↓↓,p

)

=
⎛

⎝
gn

↑↑,p 0

g↓↑,p

gn↑↑,p
−gn↓↓,p

g↑↑,p−g↓↓,p
gn

↓↓,p

⎞

⎠ .

Using the space-reflection symmetry, one can furthermore conclude that

g↑↑,p = g↓↓,−p. (45)

In particular, g↑↑,0 = g↓↓,0.
We can rewrite (44) as

∫ p0

−p0

ηfin,↑,pηin,↑,pgn
↑↑,pdp +

∫ p0

−p0

ηfin,↓,pηin,↓,pgn
↓↓,pdp

+
∫ p0

−p0

ηfin,↑,pηin,↓,pg↓↑,p

gn
↑↑,p − gn

↓↓,p

g↑↑,p − g↓↓,p

dp = c1(1 + o(1))(−3)−Ln. (46)

Consider the first integral on the l.h.s. Using Lemma 1 we can show that this integral is
O((c/3)Ln) with some c < 1, by deforming the path of integration connecting −p0 and p0.
Indeed, by Lemma 1, g↑↑,p is a small perturbation of T̂↑↑,p = a(1 − ip)−1, so we can make
|g↑↑,p| smaller than 3−L by slightly bending the path near p = 0 into the upper half-plane.

The same applies to the second integral on the l.h.s., only in this case the path should be
deformed into the lower half-plane.

Now we consider the last integral. As g↑↑,0 = g↓↓,0, the integrand has a zero in the de-
nominator at p = 0. This zero is of first order, since g↑↑,0 and g↓↓,0 are perturbations of
T̂↑↑,p = a(1 − ip)−1 and T̂↓↓,p = a(1 + ip)−1, respectively. We can divide the integrand into
two parts, corresponding to the two terms in the numerator, and then deform the path of
integration in the resulting two integrals in different directions, compensating this by adding
the residue in one case:

∫ p0

−p0

ηfin,↑,pηin,↓,pg↓↑,p

gn
↑↑,p − gn

↓↓,p

g↑↑,p − g↓↓,p

dp

= 2πi res p=0

ηfin,↑,pηin,↓,pg↓↑,pgn
↑↑,p

g↑↑,p − g↓↓,p

+ o((c/3)Ln)

= πi
ηfin,↑,0ηin,↓,0g↓↑,0g

n
↑↑,0

g′
↑↑,0

+ o((c/3)Ln),
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where g′
↑↑,0 is the derivative at p = 0. Comparing this with the l.h.s. of (46), we see that

g↑↑,0 = g↓↓,0 = (−3)−L. (47)

Now consider the model with a small δ �= 0.

Lemma 2 If L is large enough, then

(−3)−L dg↑↓,0

dδ

∣∣∣∣
δ=0

< 0. (48)

Proof The operator G was found in the previous lemma as the solution of the fixed point
equation B = F(B, δ). Using the implicit function theorem, we see that

dG

dδ
=

(
1 − ∂F

∂B

)−1
∂F
∂δ

.

Using the expansion for ∂F/∂B , one easily shows that (48) is equivalent to

(−3)−L ∂F↑↓,0(G, δ)

∂δ

∣∣∣∣
δ=0

< 0. (49)

We have

∂F(G, δ)

∂δ
= T̂

∞∑

s=1

dŴ (s)

dδ
G−s . (50)

Since g↑↓ = 0 at δ = 0, we have

∂F↑↓,0

∂δ

∣∣∣∣
δ=0

= T̂↑↑,0

∞∑

s=1

dŴ
(s)

↑↓,0

dδ
g−s

↓↓,0

∣∣∣∣
δ=0

. (51)

In order to compute the derivative dŴ
(s)

↑↓,0/dδ at δ = 0, we have to consider only those terms

in the expansion for Ŵ
(s)

↑↓,0, which are first order in δ, i.e. where the transition caused by δṼ

occurs at a single place. For s = 1, the simplest such case corresponds to the simple U-turn as
represented by the lowest leg in Fig. 4. We compute now the contribution to dŴ

(1)

↑↓,0/dδ|δ=0

from this term.
In the time evolution picture the simple U-turn corresponds to the transition

· · ·Φ1 ⊗ Φ1 ⊗ Φ1 · · · �→ · · ·Φ1 ⊗ Φ2 ⊗ Φ1 · · · (52)

(assuming that the time t < 0; if t > 0, then Φ1 and Φ2 should be exchanged since ˜Sα
0 Sα

Ln

flips the spins at t = 0). Recall that Ṽ = ∑
k Rk,k+1, and let A be the part of this sum con-

sisting of the L − 1 terms acting on the block Φ1 flipped into Φ2. Consider the expansion

AΦ1 =
4∑

l=1

κlΦ
l + v′,
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where v′ ∈ Hc. Using the asymptotic orthogonality (28), one computes that for l �= 1

κl = 〈AΦ1,Φl〉 − 〈AΦ1,Φ1〉〈Φ1,Φl〉 + O(λ2L)

= 8(L − 1)

3
(−3)−L + O((−3)2LL).

The transition (52) can also be caused by the two terms Rk,k+1 coupling the flipped Φ1 to
its neighbors, but the contribution from these boundary terms is O(L−1) compared to that
from the bulk terms.

Now taking into account Duhamel formula (38) and evaluating the Fourier transform
at p = 0, we conclude that the contribution to dŴ

(s)

↑↓,0/dδ|δ=0 from the simple U-turn is
−κ2

∫ ∞
0 e−t dt (1+O(L−1)), which is − 8

3 (−3)−L(L+O(1)). Recall that G is a perturbation
of T̂ , so that g↓↓,0 has the same sign as T̂↓↓,0 (= T̂↑↑,0). This implies (49), and hence (48),
provided the simple U-turn makes the leading contribution to the expansion (51).

We briefly argue now that this is the case.
One can somewhat simplify the combinatorics by noticing that configurations includ-

ing Hc-excitations don’t contribute to dŴ
(s)

↑↓,0/dδ|δ=0, since one needs to apply δṼ at least
twice, to create as well as annihilate the excitation. Moreover, though the expansion for
Ŵ (s) in general involves clusters of trajectories (a piece of the “big” trajectory combined
with “small” trajectories), each “small” trajectory occurs as a result of the perturbation and
hence carries a factor δ. However, for the contribution to W

(s)
↑↓ to be nonzero, the “big” tra-

jectory must also include at least one transition caused by the perturbation. This shows that
the clusters contributing to dŴ

(s)

↑↓,0/dδ|δ=0 are trivial in the sense that they contain only a
piece of the “big” trajectory and no “small” trajectories. Summarizing, for the analysis of
dŴ

(s)

↑↓,0/dδ|δ=0 one has to consider only single connected trajectories (not clusters), which
describe transitions only between states Φl (not Hc). Moreover, the perturbation δṼ is al-
ways associated with the lowest horizontal leg of the trajectory.

Recall that extra horizontal legs (compared to minimal trajectories) bring additional small
factors to the weight of the trajectory. By (29), (30), horizontal legs of length 1 are associated
with the coefficient a = (−3)−L(1 + O(−3)−L), and horizontal legs of length 2 are associ-
ated with the coefficient b = (−3)−2L(1 + O(−3)−L), so that each unit of extra horizontal
length contributes a factor O((−3)−L) to the weight.

Consider polymers of length 1 (i.e., s = 1). Trajectories contributing to dŴ
(1)

↑↓,0/dδ|δ=0

and different from the simple U-turn considered above have extra horizontal length, so their
total contribution is smaller than that from the simple U-turn, provided L is large enough.

Let s = 2. In this case the simplest trajectory contributing to dŴ
(2)

↑↓,0/dδ|δ=0 is a single
leg of length 2, corresponding to the transition

· · ·Φ1 ⊗ Φ1 ⊗ Φ1 ⊗ Φ1 · · · �→ · · ·Φ1 ⊗ Φ2 ⊗ Φ2 ⊗ Φ1 · · · .

This transition is produced by the term Rk,k+1 coupling two neighboring Φ1’s, and the corre-
sponding weight is O((−3)−2L). Other trajectories have extra legs and hence smaller weight.
By Lemma 1, g↓↓,0 = (−3)−L(1 + O(ε1)), so the s = 2 term in the expansion (51) is not
greater than O(L−1) times the s = 1 term.

For s > 2, polymers have at least s − 2 extra horizontal legs so that by choosing L large
one can make the s’th term in (51) exponentially small in s. �
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We return to the integral
∫ p0

−p0
ηt

in,pGn
pηfin,pdp, which gives by (43) the asymptotic of the

correlation function 〈Sα
0 Sα

Ln〉. In the remainder we will occasionally use the notation

G =
(

g↑↑ g↑↓
g↓↑ g↓↓

)
,

where dependence on p and δ is suppressed.
We have

Gn =
(

(g↑↑ − w−)wn+ + (w+ − g↑↑)wn− g↑↓(wn+ − wn−)

g↓↑(wn+ − wn−) (g↓↓ − w−)wn+ + (w+ − g↓↓)wn−

)

×((g↑↑ − g↓↓)2 + 4g↑↓g↓↑)−1/2,

where

w± = 1

2
(g↑↑ + g↓↓ ±

√
(g↑↑ − g↓↓)2 + 4g↑↓g↓↑).

As in our case G,ηin and ηfin are analytic in p in a complex neighborhood of the segment
[−p0,p0], we see that the integrand in

∫ p0
−p0

ηt
in,pGn

pηfin,pdp is an analytic expression, which
has singularities (branching points) at those values of p, where

(g↑↑ − g↓↓)2 + 4g↑↓g↓↑ = 0. (53)

For large L, there will be exactly two such values p, located near 0 at a distance of order
√

δ.
Indeed, if δ = 0, then (53) becomes g↑↑ = g↓↓, and this holds for p = 0 only. By continuity,
for small δ the equality (53) can hold only for some p in a small neighborhood of the origin,
and we can determine these p using the asymptotic of G at small p and δ. As shown above
(see (45), (47)), for δ = 0 we have g↑↑,p = g↓↓,−p = (−3)−L + c1p + O(p2) with some
constant c1. Furthermore, for small δ we have

g↑↓g↓↑ = c2δ(1 + O(δ) + O(p)),

where, by Lemma 2, c2 < 0. Equation (53) thus takes the form

(2c1p + O(p2) + O(δ))2 + 4c2δ(1 + O(δ) + O(p)) = 0,

and has two solutions,

p = ±
√−c2δ

c1
(1 + O(

√
δ)). (54)

The constant c1 is nonzero, because by Lemma 1 at large L the operators Gp approach T̂p

together with their derivatives in p, and T̂↑↑,p = (−3)−L + i(−3)−Lp + O(p2), so c1 must
be close to i(−3)−L.

We write

ηt
in,pGn

pηfin,p = f+(p) + f−(p),

where f± is the part containing wn±. We deform, as before, the segment of integra-
tion [−p0,p0] in the integral

∫ p0
−p0

ηt
in,pGn

pηfin,pdp slightly into the upper half-plane, then
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∫
f+(p)dp = O((c/3)Ln), with some c < 1. The remaining part,

∫
f−(p)dp, would be as

small if we deformed the line of integration in the opposite direction; so we can write

∫ p0

−p0

ηt
in,pGn

pηfin,pdp =
∫

γ

f−(p)dp + O((c/3)Ln),

where γ is a contour encircling the singularities (54).
Like in Sect. 2, it is convenient to make the change of variables w = w−(p). As shown

above, in a small neighborhood of the origin the function w−(p) is two-valued with the
two branching points (54), and it maps this neighborhood onto a neighborhood of the point
(−3)−L. We will show now that, on this latter small neighborhood, the inverse analytic
function also has two branching points at

w±,0 = (−3)−L ± √
c2δ + O(δ). (55)

These branching points can be found as w±(p), where p are zeros of the derivative:
w′±(p) = 0, i.e.

g′
↑↑ + g′

↓↓ ± (g↑↑ − g↓↓)(g′
↑↑ − g′

↓↓) + 2(g↑↓g↓↑)′
√

(g↑↑ − g↓↓)2 + 4g↑↓g↓↑
= 0.

If we look for zeros of the form p = r
√

δ, with r = O(1) and δ → 0, we get

O(δ) ± (2c1r
√

δ + O(δ))(2c1 + O(
√

δ)) + O(δ)√
(2c1r

√
δ + O(δ))2 + 4c2δ + O(δ3/2)

= 0.

This has two solutions r = O(
√

δ), one for each branch of w±(p). The corresponding
branching points of the inverse function p = p(w) are therefore

w±,0 = w±(O(δ)) = (−3)−L ± √
c2δ + O(δ).

In a neighborhood of w = (−3)−L the function p = p(w) has two branches which we fix by
making a cut connecting the two branching points found above.

Now we make the change of variables in the contour integral:

∫

γ

f−(p)dp =
∫

γ1

f−(p(w))p′(w)dw.

Here γ1 is a contour in the w-plane, encircling the cut. Consider possible singularities in the
integrand on the r.h.s. The derivative p′(w) has singularities at the branching points w±,0 so
that

p′(w) = const (w − w±,0)
−1/2(1 + O((w − w±,0)

1/2)).

Also, the function f−(p) has a singularity in the factor ((g↑↑ − g↓↓)2 + 4g↑↓g↓↑)−1/2, but it
cancels with the zero of p′(w). We conclude that we can deform the contour γ1 so that it goes
along the cut between w−,0 and w+,0. Since we can arbitrarily choose this cut, the leading
contribution to the integral comes from the endpoints w±,0 and their neighborhoods. Near
w±,0 we have f−(p(w))p′(w) = constwn(w−w±,0)

−1/2(1+O((w−w±,0)
1/2)), where the
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constant is independent of n. Combining this with the fact that the integral in question is the
leading term in the correlation function, we finally get

〈Sα
0 Sα

Ln〉 = c−
1 + O(n−1/2)

n1/2
wn

−,0 + c+
1 + O(n−1/2)

n1/2
wn

+,0.

The asymptotic for w±,0 is given by (55) and, by Lemma 2, c2 < 0. Now all the claims of
the theorem follow from the above formula. If δ < 0, then this is the commensurate case:
the term with w+,0 prevails, w+,0 is real (this follows from the reality of 〈Sα

0 Sα
Ln〉). The case

δ > 0 is the incommensurate case; the branching points w±,0 have imaginary components
and they are complex conjugate to each other by the reality of 〈Sα

0 Sα
Ln〉.

Acknowledgements The work was partially supported by RFBR grant 05-01-00449. I am grateful to
Sergey Morozov and to a referee for careful reading of the manuscript and many helpful suggestions.

References

1. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bond ground states in isotropic quantum antifer-
romagnets. Commun. Math. Phys. 115, 477–528 (1987)
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